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Transient features of natural convection in a cavity 
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(Received 7 August 1989 and in revised form 23 March 1990) 

Comparisons of numerical and experimental results for transient two-dimensional 
natural convection initiated by instantaneously heating and cooling the opposing 
vertical walls of a square cavity containing a stationary and isothermal fluid are 
presented. The good comparisons indicate that the simulation is capturing the 
important features of the flow. Several features are identified and discussed in detail; 
in particular, the presence of travelling wave instabilities on the vertical-wall 
boundary layers and horizontal intrusions, the existence of a rapid flow divergence 
in the region of the outflow of the intrusions, and the presence of cavity-scale 
oscillations, caused by the interaction of the intrusions with the opposing vertical 
boundary layer. The utilization of both numerical and experimental investigations 
has allowed a more complete exploitation of the available resources than would have 
been possible had each been conducted separately. 

1. Introduction 
Natural convection driven by imposed horizontal density gradients finds many 

applications in engineering : horizontal transport in water bodies, reactor cooling 
systems, and crystal growth procedures to name but a few. In  many of these and 
other applications, the forcing which provides the horizontal gradient is unsteady, 
and the response of the system to changing, and particularly to suddenly changing 
boundary conditions is of fundamental interest. 

The most studied form of this problem is the case of a rectangular cavity with 
differentially heated sidewalls. The steady-state version of this problem has received 
considerable attention since Batchelor ( 1954) first addressed the case of heat transfer 
across double-glazed windows. Since then, a large body of literature examining 
various experimental, numerical and theoretical aspects has appeared. Much of this 
is summarized in the reviews by Catton (1978) and Ostrach (1982). I n  spite of the 
applications of the unsteady case, however, the imposition of unsteady boundary 
conditions was evidently not considered in any detail until Patterson & Imberger 
(1980) discussed the case of instantaneous heating and cooling of the opposing 
sidewalls. 

In  Patterson & Imberger (1980, hereinafter referred to  as PI), a classification of the 
development of the flow through several transient flow regimes to one of three 
steady-state types of flow was devised. The classification depended on the relative 
values of the Rayleigh number Ra and various combinations of the Prandtl number 
Pr and the aspect ratio A ,  where 
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with g the acceleration due to  gravity, a the coefficient of thermal expansion, AT the 
temperature difference between initial and boundary temperatures, h and L the 
cavity height and length respectively, v the kinematic viscosity, and K the thermal 
diffusivity. Several regimes were described : in particular, one regime (Ra > Pr4A-4) 
approached steady state in an oscillatory manner, characterized by a decaying 
oscillation in the measure of the net heat transfer across the centreline of the cavity. 
The engineering applications of this unsteady heat transport are of some importance, 
particularly if the timescales of the flow development and of the oscillation are 
comparable to the forcing timescales. 

Other numerical simulations separately reached a similar conclusion (for example, 
Gresho et al. 1980; Staehle & Hahne 1982) using different numerical schemes. The 
importance of the result to engineering applications led Yewell, Poulikakos & Bejan 
(1982) to mount an experiment to test for the presence of this oscillatory behaviour, 
in apparently the first experiment designed to investigate the transient part of the 
flow. Although the results did not show any evidence of the oscillatory behaviour, 
many other aspects of the PI classification were supported. However, as shown by 
Patterson (1984), the Yewell et al. experiments were in a regime in which oscillations 
were not expected, and their results were entirely consistent with the PI predictions 
for the regime actually achieved. 

Ivey (1984) carried out a series of experiments again designed to  test for the 
existence of the oscillatory behaviour. Here, the correct regime was selected, with a 
Rayleigh number of O(i09)  and Pr - 7 in a cavity of aspect ratio 1, and evidence of 
the oscillations was expected. The results did not, however, show a clear indication 
of the expected behaviour : time series from several thermistors placed at  various 
locations in the upper part of the cavity showed a degree of variability, but this was 
of much higher frequency than the first-mode internal wave activity predicted by PI, 
and appeared to be associated with the downstream behaviour of the horizontal 
intrusions from the corners, interpreted by Ivey as an internal hydraulic jump. 
Further, the results indicated several other interesting features of the flow. I n  
particular, a t  an early stage of the flow development, Ivey reported that the core of 
the cavity was rotating in a direction counter to  the boundary-driven flow ; that is, 
with the hot wall to  the right, the core rotated in a clockwise direction. In a flow in 
which convection dominates the heat transfer, such a reversal would have a 
substantial effect on the net heat transfer properties. 

The numerical solutions of Chenoweth & Paolucci (1986) for a variety of steady 
problems with air as the working fluid were consistent in appearance with the Ivey 
concept of an internal hydraulic jump, and indeed they suggested that the jumps 
played an important role in the transition to turbulence. Paolucci & Chenoweth 
(1989) found numerical solutions for the transient flows generated from an initially 
steady flow at  a particular Rayleigh number which was suddenly increased. These 
results also gave support to the Ivey conjectures with respect to the hydraulic jump 
and associated oscillatory behaviour. Wave activity a t  both high and low frequencies 
was observed, and associated with boundary-layer instabilities and internal waves. 
This activity was in the context of the initial background stratification inherent in 
the steady flow initial condition, and persisted for long integration times and in some 
cases was associated with the transition to turbulence. Thus although some 
information on the approach to steady state was available, including estimates of the 
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wave properties, the paper was more concerned with the transition from steady to 
unsteady flow, as a prelude to turbulence, than with the generation of a genuinely 
steady, laminar flow from an initially stationary, unstratified state. Consequently, 
many of the arguments of PI relating to flow development are not relevant to their 
simulations. 

Paolucci & Chenoweth (1989) also briefly reported a simulation of the Ivey 
experiment, showing only temperature traces a t  two specific experimental locations. 
These were of similar character to the Ivey results, but did show evidence of the 
presence of low-frequency oscillations, consistent with the earlier numerical results. 
The paper also reported that the flow became oscillatory after a period of apparent 
steady-state behaviour. In particular, the wall boundary layers were reported as 
becoming unsteady following the decay of the low-frequency oscillations. Schladow, 
Patterson & Street (1989) performed more detailed numerical simulations of the Ivey 
experiment. Their results again showed the oscillatory behaviour in the net Nusselt 
number, and supported the conclusions of PI.  There was no evidence of the reverse 
circulation observed by Ivey in the period of flow development, but they showed that 
the presence of a weak initial stratification in the cavity was sufficient to generate a 
reverse circulation consistent with the Ivey result. The numerical simulations did, 
however, show intrusion flow structures of the kind interpreted as hydraulic jumps, 
with qualitatively similar downstream behaviour. Schladow et al. discussed a number 
of possible mechanisms for the formation of the jump-like structures in addition to 
the Ivey argument, including one based on entrainment of the intrusion by the eddies 
which form in the interior corners. 

The questions relating to the formation of these complex intrusion flow structures 
and the oscillations observed in the Nusselt number remained therefore largely 
unanswered. In this paper a joint experimental and numerical investigation is 
described which attempts to clarify these questions. Here, the results of an 
experiment at a Rayleigh number similar to that of the Ivey experiment are 
described. The experimental procedures are such that more attention is paid to the 
initiation of the experiment, and to the control of the initial stratification. Briefly, 
the results confirm that the reverse circulation in the core is not present but that the 
complex flow structures in the horizontal intrusions are present; the presence of a 
travelling wave in the intrusion is indicated ; low-frequency oscillations are separately 
observed in the intrusion ; and the presence of instabilities in the thermal boundary 
layer are observed on two separate occasions. 

I n  parallel with the experimental program, a numerical investigation has also 
taken place. The development of a time-accurate second-order scheme is described, 
and the results compared with the experimental results a t  two levels. First, 
thermistor time series a t  a number of locations are compared with temperature time 
series at the corresponding simulation locations, including identification of the 
various instabilities present. Second, streak photographs from the experiment are 
directly compared with streamline plots from the simulations. The comparisons are 
excellent, and indicate that the numerical simulation is capturing the important 
processes in the flow development. 

By making use of this combined experimental and computational investigation it 
has been possible to identify a number of flow features that have not been previously 
observed, with the experimental results giving confidence that they are not 
numerical effects. Thus, for instance, the occurrence of the boundary-layer instability 
in the context of the present problem or of intrusion splitting a t  the downstream end, 
both of which are discussed here, were not reported by Schladow et al. (1989). The 
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code used by Schladow et al. was similar to  that used in the present investigation, 
although first order in time. I n  a recent paper, Schladow (1990) shows that by 
moving to a scheme of higher order in time these boundary-layer effects, reported by 
Patterson (1989), Armfield (1989), and discussed in the present paper, are captured. 
Schladow (1990) links the two groups of boundary-layer waves with the theoretical 
description of flow on a suddenly heated vertical plate (Brown & Riley 1973) and 
with the instabilities present on vertical heated plates (Gebhart & Mahajan 1982), 
and discusses the occurrence of the long-period waves in the context of the 
mechanisms suggested in PT and Schladow et al. (1989). It is of interest to note that, 
in the present investigation, the boundary layer instability was first observed in the 
numerical simulation, and was thought to be a spurious numerical effect. By using 
the numerical results to  determine the placement of thermistors in the experimental 
apparatus, however, it was discovered that the simulation was accurately predicting 
a physical effect. The combined experimental and numerical investigation therefore 
allowed a more complete exploitation of the available resources than would have 
been the case were each branch conducted separately. 

2. Experimental procedures 
The only experiments undertaken with a view to examining the development of 

the flow from a stationary state were those of Yewell et al. (1982) and Ivey (1984). 
In  the first case, the experiment was initiated by circulating pre-cooled fluid through 
a cooling jacket attached to  the cold wall, and switching on electrical heaters 
embedded in the hot wall. The walls reached their operating temperatures in a time 
of 0 (15 min). Although this was short compared with the overall timescale of the 
experiment, it was not short compared with the timescale 7 for the stabilization of 
the thermal boundary layer. From PI, this is given by 

For the Yewell et al. experiments, this was 0 (5 s). Thus even if the experiment had 
been in a regime in which the oscillatory behaviour was expected, i t  is not clear if the 
altered start-up conditions would have altered the conclusions. Ivey (1984) on the 
other hand, initiated the experiment by pouring pre-heated and pre-cooled water 
directly into water baths adjacent to  the hot and cold walls. This procedure was 
completed in a time of 0 (5  s), substantially faster than the Yewell et al. procedure. 
From (41, the timescale for boundary-layer growth for the highest-Ra case dealt with 
by Ivey (Ra N 1.2 x 10') is 0 (12 s), and although the start-up time was shorter than 
this, i t  was still comparable with the shortest timescale of the problem. 

The present series of experiments was carried out in an apparatus designed to 
minimize the effects of a relatively slow initiation (see figure 1) .  The apparatus 
consists of a square cavity of side 24 cm and width 50 cm, the sidewalls, base, and top 
ofwhich are constructed of 19 mm Perspex sheeting. The hot and cold walls are made 
of 1 mm copper sheet, braced on the outside with Perspex ribs. Insulated hot and 
cold water baths are separated from the copper walls by a 3 em air gap, in which a 
sheet of polystyrene foam is placed during the setting up of the experiment. The bath 
walls facing the copper walls are pneumatically controlled gates which rise vertically. 
Thus, the baths are brought to the required temperatures, the foam sheet removed 
from the air gap, and the gates actuated. The heated and cooled water flood against 
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FIGURE 1.  A schematic of the experimental apparatus. The numbers indicate the locations of 
the thermistors. 

Thermistor number z (cm) y (cm) 

1 23.8 12.0 
2 19.0 22.5 
3 15.5 22.5 
4 12.0 22.5 
5 8.5 22.5 
6 5.0 22.5 

TABLE 1.  Thermistor locations, relative to the lower left corner of the cavity 

the outside of the copper walls, achieving total contact in a fraction of a second. With 
a conduction timescale through the thin copper walls of order 10 ms, an initiation 
timescale of less than 1 s is achieved. The water baths are vigorously stirred to 
minimize boundary effects on the bath side of the copper walls, and the bath 
temperatures are maintained a t  their initial temperatures for the duration of the 
experiment. The cold bath is controlled by an immersion cooler operating a t  full 
capacity, with temperature control being achieved by a more powerful immersion 
heater. The hot bath is maintained by a similar heater. In  both cases, temperature 
control within 0.05 "C was possible. By careful timing of the gate releases, suitable 
bracing of the supporting table, and bracing of the copper endwalls themselves, 
vibration was reduced to negligible amounts. The outside of the Perspex cavity walls, 
lid and base were lined with polystyrene foam for heat insulation. The insulation on 
one face was removable for photography. 

Temperature time series were taken a t  the points 1-6 shown in figure 1, and in the 
hot and cold baths for control. The actual locations of the thermistor points are given 
in table 1.  The thermistors were Thermometric FP07 fast response thermistors, 
connected to a 12 bit A-D board via a pre-amplifier, giving a resolution of 0.007 "C. 
The thermistors were mounted in thin, insulated tubing inserted through the lid of 
the cavity, placed away from the central plane so that simultaneous flow 
visualization was also possible. The thermistors were all sampled a t  2 Hz, sufficiently 
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fast to resolve the highest expected frequencies, including that of the thermal 
boundary-layer instabilities, which, from Gebhart & Mahajan (1982), is of order 
0.1Hz for the experimental parameter values. 

Flow visualization was achieved with small rheoscopic particles (manufactured by 
Kalliroscope Corporation) of size approximately 6 x 30 x 0.07 pm (e.g. Ivey 1984; 
Rhee, Koseff & Street 1984). These were illuminated by a sheet of light in the central 
plane of the cavity. The light sheet was formed by focusing light from an ordinary 
slide projector via an angled mirror below the cavity into a 1 cm wide non-reflecting 
channel directed into the bottom of the cavity. The interior of the cavity lid was 
coated with non-reflecting paint to minimize internal reflections. Streak photographs 
were taken using Ilford XPl-400 monochrome film, a t  fll.O. Usually, 8 s exposures 
were taken, although longer exposures were used in the later parts ofthe experiments. 
The nature of the particles is such that they align their larger dimension in the 
direction of the shear, and for this reason the streak photographs are not suitable as 
a means of determining velocity. However, the streak photographs give an integrated 
picture of the flow field over the period of the exposure. At no stage were three- 
dimensional motions observed in the central plane of the cavity. 

The results reported here are for an end-to-end temperature difference of 4OC 
(AT = 2 "C), using water as the working fluid, yielding a Rayleigh number of 
3.26 x los, with a Prandtl number of 7.5,  at an ambient temperature T, = 18.25 "C. 
This was sufficiently close to the Ivey (1984) experimental value for comparison of 
the main features; certainly both experiments fall in the same range of the PI 
scaling. From (4), the boundary-layer timescale is 0 (23 s). 

3. Numerical procedures 
3.1. Formulation 

The experimental set-up is modelled by a square two-dimensional cavity of side h, 
containing a Newtonian fluid initially at rest and at temperature To. The upper and 
lower boundaries are insulated, and at time t = 0, the left- and right-hand endwalls 
are instantaneously cooled and heated to T,-AT and T,+AT and maintained at 
those temperatures thereafter. The subsequent motion is described by the usual 
equations, in which the Boussinesq assumption has been made, 

Ut + uu, + vu, = - p ,  f u,, +thy,, (5)  

U,+VY = 0, (7) 

1 
Pr 

+uT, +vTY = - (TXz + T,,), 

where subscripts denote partial differentiation, u and v are the velocity components 
in the x- and y-directions, T is the temperature, and the other terms are defined in 
$1.  I n  (5)-(8) ,  u and w have been non-dimensionalized with respect to v /h ,  x and y 
with respect to h, and T-To with respect to  AT. 

The boundary conditions are given by 

u = v = 0, T = 0 at all x ,y  and t < 0, (9) 

u=v=O on x = O , l ;  y = O , 1 ,  (10) 
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U 1  
- = 0  on y = O , 1 ,  
aY 

T = + l  on x = O , 1  for t g O .  (12) 

3.2. Discretization 
Because of the large variation in lengthscales in this problem it is necessary to use 
a mesh that concentrates points in the boundary layer and is relatively coarse in the 
interior. The mesh used here is such that the point near a vertical wall is located one 
thousandth of a cavity width in from the wall, with the mesh then expanding a t  a 
rate of 10% until the edge of the thermal boundary layer is reached. From PI, the 
thermal boundary-layer thickness scale is given by 

which for this case gives a non-dimensional thickness estimate of 0.007. With the 
point nearest to the wall located 0.001 of the cavity width from the wall this 
procedure places about five mesh points in the thermal boundary layer. This results 
in a grid composed of 80 x 80 points. Variables are stored at staggered locations in 
the conventional manner used with SIMPLE schemes (Patankar 1980); that is, 
pressure and temperature are stored a t  the same locations on the base grid, whilst the 
velocity storage locations are offset half a mesh width in their respective directions 
from the base grid. 

On this mesh the derivative terms are discretized in the following manner. Using 
finite volumes all second derivatives are approximated by second-order central 
differences as, typically, 

where Arci = xi - xi-1, xi is the x location of the i th mesh point, !P is the approximation 
for T a t  the associated mesh point, and Ax2 = Ax Ax. First derivatives occurring in 
the convective terms are approximated by a QUICK scheme (Leonard 1979). 

Use of a non-constant mesh with differencing as defined above can lead to an 
inaccuracy due to the change in adjacent meshes (Patterson 1983). In the present 
case, the limitation of the maximum change in spacing between adjacent nodes to 
10Yo of the mesh size ensures that the solution is not degraded by this effect. 

The discretization produces the usual fringed block tridiagonal matrix equation, 
one for each of the momentum, temperature and pressure equations. These equations 
are solved using an implicit alternating-direction Gauss-Seidel iterative method. 
Initially an estimate for the unknown quantity is obtained by making a linear 
extrapolation from the two previous time steps. This method has been found to 
reduce computation time by a factor of approximately two, relative to the method 
of using only the previous step value as an initial estimate. In  each direction at each 
sweep location the differencing scheme used leads to the inversion of tridiagonal 
matrices, which is done using the simple and efficient Thomas algorithm. The SIMPLE 

scheme necessitates the use of under-relaxation for the correction to the stored 
pressure. In  the present case a value of 0.8 has been used. 

Various enhancements have been tested such as the SIMPLE-derived algorithms, 
PRIME (Maliska & Raithby 1983), PISO (Issa 1983) and SIMPLEC (Van Doormal & 
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FIGURE 2. (a)  Comparison of the results from the 80 x 80 standard mesh (solid line), 120 x 120 mesh 
(dashed line) and 150 x 150 mesh (dotted line) for the horizontal profiles of vertical velocity and 
temperature at mid-depth y = 12 cm, and t = 142 s. (b )  Comparison of the results from the 80 x 80 
standard mesh (solid line), 120 x 120 mesh (dashed line) and 150 x 150 mesh (dotted line) for the 
vertical profiles of horizontal velocity and temperature across the hot intrusion, at a location 2 cm 
in from the hot wall, and t = 142 s. 

Raithby 1984), as well as alternative matrix solvers including the Cholesky 
preconditioned conjugate gradient method (Jackson & Robinson 1985). These 
strategies gave some improvement in the performance of this code without affecting 
the accuracy. Other forms of the code may provide more substantial improvements 
in performance (Kightly 1986 ; Perng & Street 1990). However, all results presented 
were obtained with the basic code described here. 

3.3. T i m e  integration 

The time integration scheme is a second-order Crank-Nicholson predictor-corrector 
method in which the solution of the transport equations is carried out in the 
following order. First, all variables are known a t  time t = ndt, where At is the time 
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step. Second, the heat equation (8) is inverted to  obtain Tn+', and using this value, 
the two momentum equations (5) and (6) are inverted, using an estimated pressure 
field to obtain a first approximation to un+l and vn+l. A pressure correction equation, 
derived to enforce continuity (7),  is then solved, and the pressure field adjusted. 
Finally, new estimates of u"+l and vn+l are calculated. This procedure is repeated 
until a preset sup-norm convergence criterion is met. The non-dimensional time step 
At was determined by numerical experiment to be sufficiently small so that the time- 
wise oscillations that can occur with Crank-Nicholson schemes were not present. The 
resulting value was At = 1.25 x lop5, corresponding to, in dimensional terms, 0.7125 s 
for simulation of the experimental conditions. 

3.4. Grid independence 

To test the grid independence of the scheme the solution has been obtained on the 
mesh defined above and on two additional fine meshes, with the following parameters. 
The first mesh has one quarter of the step size at the wall, the same grid expansion 
factor, and one quarter of the time step of the standard mesh. This gives a grid of 
120 x 120 with approximately the same grid spacing in the core. The second mesh has 
one half the step size at the wall, one half the grid expansion function (i.e. an 
expansion rate of 5%), and one quarter of the time step of the standard mesh. This 
gives a grid of 150 x 150 points with approximately one half of the standard grid 
spacing in the core. Figure 2 (a )  shows the vertical velocity and temperature profiles 
as a function of horizontal distance from the hot wall at midheight in the thermal 
boundary layer. The horizontal velocity and temperature profiles as a function of 
height in the upper part of the cavity in the outflow corner region (2.0 cm from the 
hot wall) are shown in figure 2(b). Both figures are for t = 142 s, after the thermal 
boundary layer is established and the intrusion has passed the 2 cm point. In  both 
cases, the variation between the three representations is small, indicating that the 
standard mesh is free of grid- and time-step-dependent errors. 

4. Results 
I n  this section the results of both the experimental and numerical aspects are 

reported. The emphasis here is on a qualitative description of the flow and the 
comparison between the numerical and experimental results. The comparisons are 
carried out in two ways. First, thermistor traces are compared with the predicted 
temperature signal at the same location, and second, the streak photographs are 
compared with streamline plots drawn from the simulation results. 

4.1. Thermistor time series 
Figure 3 shows the measured temperature in the form T -  To from thermistor 1. The 
thermistor was located a t  midheight and with the tip 2 mm in from the hot wall; 
from (13), the thermal boundary-layer thickness scale is expected to be of order 
1.8 mm, and the thermistor was therefore expected to capture the events on the outer 
boundary of the layer. However, the physical size of the thermistor bead is of 
approximately 1.5 mm, and the signal is integrated over this region. 

There are several aspects of interest immediately evident from the experimental 
result. First, the thermistor does not respond until 4 s has elapsed, corresponding to 
the thermal boundary layer growing into the cavity. For a short time after initiation, 
convection will play a small role, and the signal at the thermistor location will 
primarily be determined by the conduction of heat in from the boundary. The 

16-2 
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Experiment 
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FIGURE 3. The measured (broken line) and computed (solid line) temperature at the location of 
thermistor 1 in the hot-wall thermal boundary layer, as a function of time. 

solution for the equivalent semi-infinite bar impulsively heated a t  one end is given 
by Carslaw & Jaeger (1959) and, for the present parameter values, suggests that, at 
2 mm, a value of (T-T,) /AT of 0.007 should be achieved in 2.0 s. At 3 mm, however, 
the predicted response time for a 0.007 signal is 4.5 s. The response is clearly 
extremely sensitive to  the actual location and small errors of a fraction of a mm in 
the location of this thermistor will therefore influence strongly the predicted response 
time. Further, the integrated nature of the signal and convection slow down the 
measured response at the inner location. The indication is therefore that the 
boundary layer is responding as expected to  an instantaneous change in temperature 
and that the initiation time is small. Second, the growth of the temperature signal 
after response follows an approximately exponential growth, but slower than that 
expected from a pure conduction solution, as expected for a conduction-dominated 
but convection-influenced process. Third, following the initial period of growth, the 
signal becomes approximately steady, with the exception of two distinct dis- 
turbances, corresponding to the steady-state boundary-layer model of PI. This is 
achieved in a timescale of order 40 s, compared with the prediction of 23 s suggested 
by (4). There are two clear modifications to the steady signal, the first at t - 40 s, and 
the second at  t - 160 s. These perturbations will be discussed in more detail below. 
Apart from these perturbations the boundary layer is substantially steady after the 
period of initial growth, supporting the PI model of a thermal boundary layer 
initially governed by a balance between temperature growth and conduction from 
the wall, followed by a balance between vertical convection and conduction from the 
wall. As noted above, the thermistor is actually located outside the thermal 
boundary-layer scale with the result that  the achieved steady value of (T-To) is 
40 % of AT. Only the first 300 s of the record are shown ; no substantial changes are 
evident in the remainder. As will be shown below, there is evidence of a low- 
frequency oscillation (of period 0 (70 s)) in the later part of the record. There is no 
evidence from either the experimental or numerical results of the development of 
wall boundary-layer unsteadiness at times beyond 0 (1000 s) as briefly reported by 
Paolucci & Chenoweth (1989). This inconsistency may be due to the slightly lower Ra 
value used here. 
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FIGURE 4. (a)  The measured temperatures a t  thermistor locations 2 4  as marked in the heated 
intrusion, as a function of time. ( b )  The measured (broken line) and simulated (solid line) 
temperatures a t  thermistor location 4 (the midpoint of the cavity width), as a function of time. 

Also on figure 3 is the simulated temperature at the same height and at  2.5 mm in 
from the wall. The mean steady temperature is initially slightly higher than the 
observed value ; however, the extreme sensitivity to horizontal location in this region 
of high temperature gradient means that a change of a fraction of a mm in either 
location would account for this. The features of the observed signal are exceptionally 
well reproduced, with the exception that the numerical result appears to respond 
slightly faster, and in general leads the experimental result with the second group of 
instabilities occurring some 20 s earlier in the numerical result. This time offset is 
consistent with the experiment achieving a slightly lower Rayleigh number than 
intended, perhaps through boundary effects in the water baths. Alternatively, minor 
heat losses may account for the lagged experimental result. These aspects have not 
been pursued 8s the numerical simulation is clearly reproducing the features of the 
experiment. The amplitude of the perturbations is slightly greater than that 
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FIGURE 5(a-c). For caption see p. 482. 
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FIGURE 5(d-f). For caption see p. 482. 



482 J .  C .  Patterson and S. W .  ArmJieEd 

FIGURE 5. The streak photographs and simulated streamlines at various times after initiation. The 
streak photographs are 8 s exposures, beginning at the times indicated. The maximum value of the 
stream function $ is also given in each case, and eight contours are drawn between the zero and 
maximum values of 9. (a) 32 s ,  $,., = 5.9 x m2 s-l; (c) 64 s, 

$max = 1.2 x m2 s-l; (f) 
112 s, $max = 1.24 x 

observed ; again these characteristics are extremely sensitive to the location of the 
reference point. The numerical results are similar in character to those of Schladow 
(1990) ; the different Ra value and the different reporting locations, however, 
preclude a direct comparison. 

The time series from the thermistors a t  locations 2-6 are shown in figure 4(a). 
These thermistors are all located 15 mm below the lid of the cavity, and at horizontal 
positions 50 mm, 85 mm, 120 mm, 155 mm, and 190 mm from the hot wall (table 1) .  
The increase in temperature for each thermistor is an indication of the passage of the 
nose of the heated intrusion, allowing an estimate of the speed of the nose to be 
calculated as 2 mm s-l. Following PI, the intrusion will be governed by a viscous- 
buoyancy balance, since a purely inertial intrusion cannot exist unless Ra > Pr16A-12, 
which is not the case here. The PI scaling yields, for a viscous intrusion, a velocity 
of order 3 mm s-l, consistent with the measured result. The rise in temperature is 
followed immediately by a drop as the nose of the intrusion passes by. Thermistors 
2, 3, and 4 (near the hot wall) show evidence of an oscillation beginning a t  around 
80 s ;  this is evidently the perturbation observed on the thermal boundary layer a t  
40 s which has travelled up the layer and along the intrusion. Similarly, a t  200 s, all 
thermistors except thermistor 6 show a strong oscillatory signal which is the effect 
of the second thermal boundary-layer perturbation observed at 160 s, shown in 
figure 3. Using the intrusion velocity of 2 mm s-l calculated above and noting the 
times that the intrusion passes each thermistor location, it may be estimated that the 
intrusion reaches the far wall a t  time 139 s. This implies that  the cold intrusion 
reaches the base of the hot-wall thermal boundary layer a t  139s, triggers a 
perturbation that travels up the vertical layer, becoming evident at the midheight 
at time 160s, and travels along the intrusion at reduced speed with decaying 
amplitude. Thus each of thermistors 2 4  shows the instability with decreasing 
amplitude, with the effect being totally dissipated by the time thermistor 6 is 
reached. Since the perturbation travels from the base of the thermal boundary layer 
to the midheight (12 em) in 21 s, its speed in the vertical layer may be estimated as 

m2 s-l; (b) 48 s ,  $,,,ax = 1 . 1  x 

m2 s-'. 
m2 s-l; (d )  80 s, $I,,x = 1.25 x m2 s-l; ( e )  96 s ,  $mx = 1.25 x 

m2 s-l; (9) 128 s, $,,,ax = 7.2 x 
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0.6 cm s-l; in the horizontal intrusion the amplitude increases substantially and the 
speed drops to 2.5mms-l, based on the times of appearance in each thermistor 
signal. The perturbation velocity is, however, greater than the intrusion speed of 
2 mm s-'. This result is consistent with the non-appearance of the first perturbation 
in the signal from thermistor 6 as noted above ; the perturbation reaches the nose of 
the intrusion before thermistor 6 is reached. The relative speed of the perturbation 
to the intrusion implies that the local internal Froude number is less than one, which 
has implications with respect to the character of the intrusion itself, as discussed 
below. This mechanism for the triggering of the second group of instabilities was also 
suggested by Schladow f 1990) from numerical results, although explicit results for 
wave speeds were not discussed. 

Figure 4(b)  shows- the simulated and observed temperature time series a t  the 
location of thermistor 4 (on the centreline of the tank). The comparison here is not 
as good as in the thermal boundary layer; however, the simulated results display the 
same general features. Again, the predicted instability occurs earlier than the 
observed, and is of higher amplitude. This is a region of high vertical gradient, and 
the comments above with respect to location are also relevant here. 

4.2. Flow jield 

On a broader scale of comparison, computed streamlines and the observed streaks are 
compared in figures 5 and 6 for a range of times from near initiation to near steady 
state. The selection of times also allows a description of the flow evolution and the 
comparisons shown are typical of those obtained a t  all stages. The streaks are 8 s 
exposures, with the exception of figure 6(e)  which is over 24 s, and the streamlines 
are at  the nearest available time to the initial time of the streaks. In each streamline 
plot, eight equally spaced streamlines between, but not including, the minimum 
value (zero, on the boundary) and the maximum value of the stream function are 
drawn. The maximum value of a stream function in dimensional units is indicated in 
each figure legend. In all cases the hot wall is on the right, and reference is made to 
the hot wall and the heated intrusion in the following description. For clarity, the 
locations of the features of the flow discussed below are shown only on the streamline 

Figure 5(a-g) shows the development of the flow after establishment of the 
thermal boundary layer, beginning at an elapsed time of 32 s (5a)  and ending at 128 s 
(59 ) .  This sequence shows the formation of an anticlockwise eddy in the corner, below 
the intrusion (5a ,  b) .  The intrusion separates from the horizontal wall ( 5 b ) ,  and a 
small reverse circulation is set up between the intrusion and the wall ( 5 c ) .  The 
intrusion nose penetrates to about the half-width position by 80 s ( 5 4 ,  and the eddy 
formerly in the corner has been advected towards the far wall, but at a slower rate 
than the intrusion speed. The separation has remained in approximately the same 
location. By 96 s (5e), the intrusion has reached approximately two thirds of the 
cavity width, at 112 s (5 f )  the intrusion has almost reached the far wall and the eddy 
is at mid-distance, and at  128 s (5g ) ,  the intrusion has reached the far wall. These 
times are consistent with the indicators from the thermistor signals shown in figure 
4 (a) .  

The streamline plots generated by the simulation show essentially the same 
patterns as the streaklines. Quantitative comparisons are not possible as the 
streaklines are not good indicators of velocity. As noted above, however, they do 
indicate the flow direction locally. In every case, the numerical results have 
reproduced the features of the observations. 

plots. 
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FIGURE 6 (a-c). For caption see facing page. 
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FIGURE 6. As for figure 5, at a later stage of the flow, with (e) being exposed over 24 s. (a) 176 s, 
$,,, = 1.0 x m2 s-l; ( b )  256 s, +.,,, = 9.0 x m2 s-'; ( d )  
480 s ,  = 6.3 x m2 s-l; ( e )  1500 s, = 2.6 x m2 s-*. 

me s-l; (c) 352 s, +-,,, = 7.5 x 

The second group of observations (figure 6) follows the development of the motion 
after the first passage of the intrusion. The timing of the figures is more widely spaced 
in this case to allow the development to near steady state to be observed. Figure 6 ( a )  
(176 s )  shows that the intrusion has split a t  the cold wall into two distinct streams : 
one, the hottest fluid, travelling along the cavity lid, and the other diverging towards 
the centre of the cavity, forcing the anticlockwise eddy back towards the hot wall. 
Some clockwise recirculation in the split region is evident, and the flow divergence 
near the emergent corner has become sharper. A second separation has formed just 
downstream of the first, possibly associated with the instability observed a t  this time 
in figure 4. A t  256s ( 6 b ) ,  the split in the intrusion has penetrated back to  the 
divergence and the anticlockwise eddy has been intensified. The weak clockwise 
circulation in the split region has remained located near the cold-wall end of the 
intrusion. This circulation is also clearly shown in enlarged form in figure 14, as 
discussed below. The divergence ahead of the intrusion separation is extremely 
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sharp, but the second separation has virtually disappeared. By 352 s (6c) ,  the 
anticlockwise eddy has begun migrating into the core region, the interior of the 
cavity is being filled by the separated intrusion, and the sharpness of the diverging 
flow is retained. The remainder of the flow follows this pattern; the eddy moves 
progressively into the core until it meets with its equivalent cold-wall eddy to form 
a transient circulation in the centre, with the core being filled by means of the interior 
stream of the intrusion. A weak clockwise circulation maintains the two intrusion 
streams (6d,  480 s). The layering by the intrusion ultimately fills the cavity, the 
interior eddy and the clockwise eddy are dissipated, and the flow becomes essentially 
parallel in the core (6e,  1500 s). This streak photograph shows evidence of vertical 
flow reversal as the upper half of the vertical boundary layer detrains ; the lower-half 
core flow remains essentially parallel as it is entrained. This streak photograph is 
taken over 24 s, indicating that the flow in the core is of substantially reduced 
velocity. Although the flow is not at steady state a t  1500 s, the character does not 
change and no further streak photographs are shown. 

The corresponding streamlines from the numerical result again compare well with 
the observations. The exception is in the direction of the flow of the fluid being 
entrained by the vertical boundary layers in figure 6 ( b ) .  The observations indicate 
that the clockwise eddy a t  the upper end of the cold wall and the anticlockwise eddy 
at  the lower end are stronger than that indicated by the simulation. This has the 
effect of returning the fluid from the interior cold intrusion back to  the cold wall for 
entrainment, rather than across to the hot wall as indicated by the simulation. This 
is a transient effect and the difference quickly disappears; this is a region of 
extremely weak stratification and relatively low velocities, and small errors are 
acceptable. 

5. Discussion 
Although the experimental and numerical results confirm the extreme complexity 

of the flow development, it is possible to  identify several distinct features which 
partly characterize the description. These are the presence of the perturbations on 
both the thermal boundary layer and the horizontal intrusions and the complex 
horizontal intrusion flow incorporating both the sudden divergence near the 
emerging corner and the subsequent intrusion splitting a t  the downstream end. In 
addition, the questions relating to the reverse core rotation and low -frequency 
oscillation in the Nusselt number remain. These latter questions are dealt with first. 

There is no evidence in either the experimental or numerical results of the transient 
reverse rotation in the core reported by Ivey (1984). This was first reported at  80 s 
after initiation by Ivey, corresponding to figure 5 ( d ) ,  which shows no indication of 
such a centrally rotating eddy. This is consistent with the conclusion of Schladow et 
al. (1989) whose numerical results suggested that the reverse rotation was the result 
of a weak initial stratification in the cavity. Whilst this has implications for other 
flows and applications of a geophysical nature particularly, the matter is not pursued 
further here. 

The oscillatory approach to steady state documented by a number of numerical 
investigations is also found here. As noted in the introduction, the computed Nusselt 
number a t  the wall Nu,, and a t  the centreline of the cavity Nu,, integrated over the 
depth. defined bv 
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FIGURE 7 .  The computed Nusselt numbers a t  the wall (Nu,) and at the centreline of the cavity 
(Nu,), as a function of time. 

where X = 0 for Nu, and X = $ for Nu,, have been commonly used as an indicator 
of the approach to steady state (e.g. PI; Gresho et al. 1980; Staehle & Hahne 1982; 
Schladow et al. 1989; Schladow 1990). Figure 7 shows a clear decaying oscillatory 
approach to steady state in Nu,, with a period ranging from 87 s for the first cycle, 
to 60 s at t - 1500 s. There are also high-frequency signals present on both Nu, and 
Nu, during the first cycle. In the case of Nu,, these are consistent with the passage 
of the perturbations on the thermal boundary layer referred to above, and reference 
to figure 3 shows that, on both occurrences, the appearance of the perturbations at 
mid-depth in the simulation result corresponds closely to the appearance of the high- 
frequency signal in the integrated result, expressed as Nu,. Similarly, the high- 
frequency signals in Nu, are the result of these perturbations travelling across the 
intrusion. While it is possible that other local oscillatory effects may be masked in the 
integration procedure, the integrated result is a clear indicator of the presence and 
subsequent decay of the cavity-scale waves, and of the presence of the two separate 
groups of boundary-layer instabilities. 

The experimental results give a weaker indication of the oscillatory behaviour. The 
temperatures measured in the intrusion are strongly influenced by the passage of the 
perturbations, and it is not until these have passed that any indication of the 
presence of oscillatory behaviour is observed. Figure 8 shows the difference between 
the temperatures at  locations 3 and 5 as a function of time, for the period 30CL600 s. 
All activity from the boundary-layer perturbations has passed in this period, and a 
small-amplitude wave, of period approximately 70 s, is present. Although not 
definitive, this is a strong indication of the presence of a first-mode internal wave. 
The PI prediction for the period, based on a linear stratification, is 0 (55 s), 
consistent with the longer-timescale simulated result, although somewhat shorter 
than the measured and early-timescale simulated result. This discrepancy is likely to 
be due to the nonlinear nature of the stratification, particularly in the early part of 
the flow development. 

The presence of the perturbations on the thermal boundary layer and subsequently 
on the horizontal intrusion is of considerable interest. These perturbations are 
triggered by a disturbance of the layer, in the first case by its initiation, and in the 
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FIGURE 8. The measured temperature difference T,,, between thermistors 3 and 5 ,  as a function 
of time after the initial transients have disappeared. 
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FIGURE 9. Comput,ed vertical temperature profiles 1 mm in from the hot wall at t = 165.6 s, 172.8 s, 
and 180 s, as shown. The time label in each case identifies the second perturbat,ion in the signal. 

second case by the impact of the incoming intrusion. On the boundary layer, these 
perturbations result in travelling wave instabilities, increasing in amplitude in the 
direction of travel up the hot wall. Figure 9 shows, from the simulation, overlaid 
vertical temperature profiles in the thermal boundary layer (at a location 1 mm in 
from the hot wall) a t  times t = 165.6 s, 172.8 s and 180 s, corresponding to the time 
at which the second group of waves is travelling up the boundary layer. In each case 
the peak of a particular perturbation is marked. Clearly the amplitude of the 
perturbation is increasing as i t  moves up the boundary layer. The instability travels 
a t  a speed of 0.49 cm s-l, compared with the mean boundary-layer velocity a t  mid- 
depth of 0.26 cm s-l and peak velocity of 0.46 cm s-l, and the experimental estimate 
of 0.6 ern s-'. On the other hand, the experimental results suggest that the horizontal 
intrusion is stable to these perturbations, as the amplitude decreases with travel 
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along the intrusion as discussed above. The numerical results confirm that the 
amplitude of the perturbation dies away in the intrusion ; the situation, however, is 
complicated by the presence of the rapid flow divergence near the emergent corner, 
and the specific results are not shown. It is evident, however, that, on the boundary 
layer, the perturbations are unstable and grow with passage; on the intrusion, the 
perturbations are stable, and decay before the far endwall is reached. The frequency 
of the travelling waves is observed to be 0.083 Hz, close to the 0.1 Hz estimate from 
Gebhart & Mahajan (1982) noted above. 

These perturbations in the context of the present problem were reported by 
Patterson (1989) and Armfield (1989). Schladow (1990) related the presence of the 
first group of perturbations on the thermal boundary layer to the travelling ‘leading- 
edge’ effect discussed by Brown & Riley (1973) and others. In particular, on 
initiation, the effect travels upstream from the leading edge, in this case the lower 
corner of the heated plate, and manifests itself as the first travelling wave group 
observed. According to Brown & Riley, downstream (i.e. ahead) of the effect of the 
thermal layer is governed purely by horizontal conduction and vertical convection 
plays no role in the heat transfer. Convective heat transfer a t  a point commences 
only once the travelling waves have passed that point. Thus upstream of the waves 
the boundary layer is strongly influenced by vertical convection of heat and the 
approach to a steady state can begin. This is discussed a t  length by Schladow (1990) 
and further discussion is not warranted here ; however, this description implies that 
the scales of the starting transient are those of the travelling waves observed. 

Bergholz (1978) carried out a linear stability analysis on the steady flow between 
differentially heated infinite vertical plates, and, in particular, predicted values of 
the wave speed for travelling instabilities on the thermal boundary layer. The 
analysis is, however, based on the assumption of a stable background stratification 
in both the fluid and on the vertical plates, which is not the case for either group of 
travelling waves discussed here. I n  both cases, the background stratification has not 
been established at the time of passage of the instabilities. The zero-stratification- 
parameter results presented by Bergholz (for Pr values other than the present case) 
correspond to closely spaced plates, in which the boundary layers encompass the 
entire cavity, and are not applicable here. 

Le Querd & Alziary de Roquefort (1986) observed similar travelling perturbations 
in a numerical simulation of convection in a rectangular cavity. In  that case, a steady 
solution was disturbed by increasing the Rayleigh number instantaneously, and, for 
Ra > 2.1 x lo6 and A > 2 they observed waves which travelled up the boundary layer 
and across the intrusion to  be entrained into the opposing boundary layer. Although 
these waves were not generated by either the flow initiation or the impact of the 
intrusion, they appear to  be of similar character to those observed here. 

The properties of such buoyancy-driven instabilities have been extensively studied 
(for example Gill & Davey 1969 and Tzuoo, Chen & Armaaly 1985, as well as 
Bergholz 1978) and further investigation is outside the scope of this paper. It is 
interesting to speculate, however, that  these perturbations may play a role in the 
transition to turbulence observed in high-Ra flows of this kind. In  the present case, 
the perturbations decay on the horizontal intrusion before the far wall is reached ; in 
the Le Querd and Alziary de Roquefort (1986) case the perturbations survive the 
horizontal passage and a periodic quasi-steady flow is established. Numerical 
investigations by Paolucci & Chenoweth (1989) of a problem similar to that studied 
by Le Querd & Alziary de Roquefort indicated that at higher Ra values, chaotic flow 
results. One possible inference is that  the perturbations evident in the unsteady flow 
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FIGURE 10. Computed temperature profiles across the heated intrusion at distances 1 cm, 4 cm, 
and 12 cm out from the hot wall. as shown. 

described here will become unstable on both vertical and horizontal layers, with the 
possibility of a transition to locally chaotic flow at sufficiently high Rayleigh 
numbers. 

The structure of the velocity field near the emerging intrusions is similar in general 
terms to that observed by Ivey (1984), and to the simulations of Schladow et al. 
(1989). While the concept of an internal hydraulic jump is attractive, there are 
several features which suggest that other mechanisms may be responsible. Following 
Ivey’s scaling for the Froude number of the exiting flow, a value of 0 (4) is suggested 
for the present case. Further, using the PI scaling for velocity and intrusion thickness 
yields a Reynolds number Re - RailPr, which for the present case is 0 (20). These 
values suggest that the flow structure will be quite laminar, but that  if the structure 
is indeed an internal jump, significant entrainment should occur. Ivey associated this 
entrainment with the temperature fluctuations measured in the intrusion. These 
fluctuations have also been observed and simulated in the present case, arising from 
the perturbations generated on the thermal boundary layer, quite independently of 
the flow structure in the intrusion. Further, Paolucci & Chenoweth (1989) gave 
values, based on their simulations, of the order of magnitude constants associated 
with the steady-state Froude-number calculations ; for this flow the Paolucci & 
Chenoweth constants yield an internal Froude number of 0.3, much less than that 
required for the presence of a jump. Based on the present simulations, the calculation 
of mean velocity and temperature fields over the width of the intrusion, upstream of 
the rapid flow divergence, yields a maximum Froude number of 0.7, from the 
unsteady part of the flow. I n  both cases, the implication is that  the flow is subcritical 
on exit from the corner, and that the rapid flow divergence observed is due to other 
mechanisms. 

Reference to figure 5 clearly shows the formation of the flow divergence 
downstream of the emerging intrusion. At t = 80 s (figure 5 4  for example, the region 
of divergence is established in the region 2 to 8 cm in from the corner ; beyond 8 cm, 
the flow has returned to the wall although the intrusion is much broader. Figures 10 
and 11 show the computed temperature and horizontal velocity profiles in the region 
of the upper horizontal boundary at t = 80 s, for horizontal locations before the 
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FIGURE 11. Computed horizontal velocity profiles across the heated intrusion, at the same 
locations used in figure 10. 

divergence (1 cm away from the corner), in the midst of the divergence (4 cm) and 
after the flow has returned to the wall (12 em). Observation of these profiles gives rise 
to the formulation of an hypothesis for the mechanism responsible for the divergence. 

Consider the temperature profiles first. On exit from the corner, the temperature 
profile retains the characteristics of the vertical-wall thermal boundary ; that  is, a 
very rapid reduction in temperature over a scale of 0.5 cm. As the vertical wall 
provided a source of heat, this is consistent with the thermal boundary condition on 
that wall. However, it  is not consistent with the insulated condition on the horizontal 
wall, and the profile must adjust to provide 8 zero gradient normal to  the wall. As 
no heat can escape through the wall, this is only possible if heat is transferred 
towards the centre of the cavity. This means that the temperature a t  the horizontal 
boundary will decrease, and the temperature for some region interior to the 
boundary will increase, over the original values. The profile a t  4 cm in from the 
corner shows this characteristic, further distorted by convection. The convective 
effect is present as Pr > 1, and the velocity peak is further removed from the 
boundary than the influence of the thermal boundary adjustment. Between the point 
at which the profiles cross and the wall the fluid is cooler than the incoming stream; 
beyond the crossover, the fluid is warmer. There will therefore be a blocking effect 
a t  this point, with a tendency for the intrusion to split around the crossover point. 
However, the location of the crossover is determined by thermal conduction, and its 
position moves out from the horizontal boundary following the usual ( ~ t ) ;  law, 
beginning immediately the flow turns the corner. The net effect is that the intrusion 
diverges immediately, and separates from the wall. With a Reynolds number of 0 
(20), inertia is dominant, and the flow retains a coherent jet-like structure until 
viscosity becomes important. Following PI, this occurs in time T,, where 

For the present case, - 20 s, and with the PI-scale velocity in an inertial intrusion 
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FIGURE 12. (a) The computed pressure contours in the region of the emergent corner. ( b )  The ratio 
of the vertically integrated inertial and viscous terms in the horizontal momentum equation in the 
same region as (a ) ,  from the simulation results. 

of 0 (3 mm s-l), the intrusion will begin to spread back towards the boundary a t  a 
distance 0 (6 em) in from the emergent corner. Both experimental and numerical 
results show (figure 5 d )  the jet diverging at a distance of approximately 6 cm in from 
the corner. 

The numerical results may be used to confirm in detail the above mechanism. 
figure 12 (a)  shows the simulated pressure contours in the region of the emergent hot 
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FIGURE 13. The computed streamlines (broken lines) and temperature contours (solid lines) 
describing the  heated intrusion and its impact on the  far-wall boundary layer, at times (a)  t = 100 s, 

= 1.25 x m2 s-l; ( b )  t = 167 s, I#,,,,, = 9.8 x m2 s-l; (c) t = 232 s, $,,,,, = 
8.0 x m2 8-l .  The temperature contours are at the values of (T-To) "C shown, and the 
streamline contours are equally spaced between the boundary value (zero) and the maximum value 
indicated. 

intrusion. The high-pressure region located against the horizontal wall is the result 
of the horizontal gradient in temperature referred to above. In  figure 12 ( b ) ,  the value 
of the ratio of the inertial and viscous terms of the horizontal momentum equation, 
averaged across the intrusion thickness, is shown. Clearly the inertial terms 
dominate in the region upstream of the peak divergence from the boundary at  6 cm 
from the corner; downstream of that point the terms are of similar order. 

The splitting of the intrusion at the far end as it impacts the opposing wall has an 
important effect on both the subsequent behaviour of the flow divergence just 
discussed, and on the progression to steady state. Again, the simulation results are 
used to examine this mechanism in detail. Figure 1 3 ( a )  shows the simulated 
streamline and temperature contours in the upper half of the cavity a t  time t = 100 s,  
indicating that approximately half of the intrusion contains fluid from the core 
region a t  ambient temperature, consistent with the knowledge from above that, a t  
this stage, the intrusion is governed by a viscous-buoyancy balance. At time t = 
167 s (figure 13b),  the intrusion has hit the wall. The streamline pattern in the region 
of the impacting corner has changed character considerably, with a clear indication 
of a divergence of the flow into two streams; the first, comprising the heated fluid, 
along the horizontal wall, and the second, comprising the fluid a t  ambient 
temperature, into the core region, away from the corner. An enlargement of the 
corner region a t  time t = 167 s (figure 14) indicates that  there is recirculation in the 
split region. As time increases, the split region moves back towards the emergent 
corner and at t = 232 s (figure 13c) ,  has penetrated sufficiently far to influence the 
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FIGIJRE 14. The computed streamlines in the region of the interaction between the intrusion and 
the far-wall boundary layer, at time t = 167 s. The streamline contours are equally spaced between 
the boundary value (zero) and t+?.,,, = 1.0 x m2 s-l. 

divergent flow structure a t  that location. A detailed examination of the complex 
interaction between the splitting and the divergent flow is beyond the scope of this 
paper; qualitatively, the effect is to force the divergent flow back towards the 
emergent corner as observed in figure 5.  

The mechanism for the splitting of the intrusion is related to  that proposed by PI 
for the generation of the cavity-scale internal waves. Briefly, the far-wall boundary 
layer entrains fluid over its full length and is unable to  entrain the incoming intrusion 
over the intrusion thickness alone, as postulated by PI, and some backflow is 
inevitable. Since the intrusion is stratified, the heated backflow will intrude between 
the incoming heated fluid and the ambient-temperature fluid, generating the 
splitting as shown. 

6. Conclusions 
In this paper an experimental and numerical programme to investigate the 

development of the flow arising from the application of an instantaneous heating and 
cooling of the opposing sidewalls of a square cavity has been described. The 
experimental apparatus ensured that the start up was virtually instantaneous, and 
frequent streak photographs have given a good description of the flow. The flow 
showed several general features similar to the only other relevant experimental 
result, but was significantly different in detail. In  particular, although the structure 
near the emerging horizontal hot and cold intrusions was similar to  that observed by 
Ivey (1984), an alternative mechanism to the internal hydraulic jump suggested by 
Ivey has been proposed. 

The numerical results were compared with the experimental results a t  t,wo levels. 
First, a sequence of streak photographs were compared with instantaneous 
streamline plots from the numerical simulat,ion, and in general, the numerical results 
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reproduced the features of the flow. At a more quantitative level, thermistor time 
series from the experiment were compared with the simulated temperature time 
series a t  the same points. These results were extremely sensitive to the location of the 
thermistors and the simulation points as the temperature gradient in this region was 
high ; the comparison, however, revealed that the features of the experimental results 
were reproduced by the simulation, with a small timing offset. In particular, the 
presence and character of the two separate occurrences of boundary-layer instability 
are reproduced accurately by the simulation. 

The high-frequency signal observed in the thermistor time series recorded here is 
of similar character to that observed by Ivey. In  this case, however, it has been 
demonstrated that this is the result of the passage of the boundary-layer 
perturbations along the intrusions, rather than the downstream effects of an internal 
hydraulic jump as suggested by Paolucci & Chenoweth (1989) for the Ivey 
experiment. The Chenoweth & Paolucci (1986) calculations for Froude number 
would generate internal Froude numbers substantially less than unity for the present 
and other lower-Ra cases which, a t  least numerically, show an indication of the 
oscillatory behaviour. Based on the present numerical results, the Froude number is 
also less than unity. Further, many of the numerical cases treated by PI gave an 
indication of highly damped oscillatory behaviour, but with no evidence of the 
complex flow structures near the emerging intrusions. This suggests that the low- 
frequency oscillatory behaviour is related to mechanisms other than the formation 
of the flow divergence near the emergence of the intrusions. The high-frequency 
signal modulating the Nusselt-number plots is the result of the boundary-layer 
perturbations being advected across the cavity. It is possible that these are 
responsible for transition to turbulence at higher Rayleigh numbers when the 
perturbations become chaotic on the boundary layer or on the intrusion. It also 
appears possible that the periodic flows simulated by Le Quer8 & Alziary de 
Roquefort (1986) arise from these perturbations travelling around the cavity. 
Although modified by the presence of the flow divergence, these perturbations are 
not produced by the emerging intrusions. 

The other aspect of interest from the Ivey (1984) experiments was the presence of 
the counter-rotating core motion. There was no evidence of this in the present 
experiments, supporting the conclusions of Schladow et al. (1989). The presence of 
cavity-scale internal waves was observed ; however, the amplitude of the oscillation 
in the temperature signals is small. In  common with the Ivey result the oscillation 
was therefore not readily evident in the temperature signal in the intrusion ; however, 
the difference between the two signals gives strong evidence of the oscillatory nature 
after the other features (for example the travelling instabilities) had passed. 
Although the amplitude was weak, the integrated nature of the computed Nusselt 
numbers shows the oscillation clearly. 

Several features therefore emerged as crucial to an understanding of the transient 
features of the flow. These were the development of the boundary-layer instabilities, 
the formation of the rapid flow divergence near the emerging intrusion corner, the 
splitting of the intrusion on impact with the far vertical wall, and the related 
presence of low-frequency signals in the temperature and Nusselt number. Although 
some discussion of each of these aspects has been presented, a full analysis is outside 
the scope of this paper. However, some details have been presented. In particular, 
the presence of the perturbations has been discussed in the light of both the 
experimental and numerical results, a mechanism for the formation of the rapid flow 
divergence suggested, the splitting of the intrusion placed in the context of the 



496 J .  C. Patterson and S. W .  Armfield 

previous PI result, and the presence of the internal waves is strongly supported. 
These aspects are presently being pursued in more detail. 
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